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INTRODUCTION ANTIBACTERIAL PROPERTIES OF THE

The gram-negative bacterium Helicobacter pylori persistently
colonizes the human stomach (34, 145, 153, 217). H. pylori
colonization of the stomach elicits humoral and cellular im-
mune responses (28, 52, 129, 180), which in most cases do not
result in bacterial clearance. In the absence of antibiotic ther-
apy, H. pylori can persist in the human stomach for decades or
for an entire lifetime (116). H. pylori is widespread throughout
the world and is present in about 50% of the global human
population (178, 226). H. pylori-induced gastric inflammation
does not cause symptoms in most infected persons (56) but is
associated with an increased risk for development of duodenal
ulcer disease, gastric ulcer disease, gastric adenocarcinoma,
and gastric lymphoma (45, 179, 183, 217, 233). In this review,
we examine innate and adaptive immune responses to H. pylori
and discuss mechanisms by which H. pylori evades immune
clearance.
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HUMAN STOMACH

Humans ingest many microorganisms each day, but most
cannot successfully colonize the stomach. One of the most
important antibacterial properties of the human stomach is its
acidic pH. Under fasting conditions, the human gastric luminal
pH is <2, which prevents the proliferation of bacteria within
the gastric lumen. Within the gastric mucus layer overlying
gastric epithelial cells, a pH gradient exists, ranging from a pH
of about 2 at the luminal surface to a pH of between 5 and 6
at the epithelial cell surface (185, 225). After entering the
stomach, H. pylori penetrates the gastric mucus layer (203) and
thereby encounters a less acidic environment than that which is
present within the gastric lumen. H. pylori typically does not
traverse the epithelial barrier (97), and it is classified as a
noninvasive bacterial organism. Within the gastric mucus layer,
most H. pylori organisms are free living, but some organisms
attach to the apical surface of gastric epithelial cells and may
occasionally be internalized by these cells (10, 97, 119, 173).

Multiple factors produced by the gastric mucosa limit the
proliferation of bacteria (Fig. 1). Antibacterial peptides, in-
cluding B-defensins 1 and 2 and LL-37, are active against many
different species of bacteria (74, 94). Lactoferrin inhibits bac-
terial growth by restricting the availability of extracellular Fe**
(133) and can have direct effects on bacterial membrane per-
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FIG. 1. Antibacterial properties of the stomach. The stomach is intrinsically resistant to bacterial colonization. Factors which contribute to this
resistance include gastric acidity, lactoferrin, and antibacterial peptides (LL-37, B-defensin 1, and B-defensin 2). The gastric epithelial layer
constitutes a physical barrier that prevents entry of bacteria into the gastric mucosa. Ribbon diagrams of lactoferrin, B-defensins, and LL-37 are

derived from published structures (24, 200, 218).

meability (13, 175, 253). Lactoferricin, a peptide derived from
lactoferrin, also has antimicrobial properties (80). Lysozyme
can degrade the peptidoglycan of many bacterial species. Sur-
factant protein D is capable of aggregating many different
types of microorganisms in a calcium-dependent and lectin-
specific manner (114, 158, 164). Finally, specific components of
human gastric mucin can inhibit bacterial growth; alpha-1,4-
GluNAC-capped O-glycans inhibit biosynthesis of cholesteryl-
a-D-glucopyranoside, a component of the H. pylori cell wall
(112).

Toll-like receptors (TLRs) are present on the surface of
gastric epithelial cells and can recognize pathogen-associated
molecular patterns (PAMPs) (21, 201, 216). If bacteria invade
and penetrate the gastric epithelial barrier, the alternate path-
way of complement is activated, and invading bacteria encoun-
ter macrophages and neutrophils. Since most H. pylori organ-
isms localize within the gastric mucus layer and do not invade
gastric tissue, contact between H. pylori and phagocytic cells
probably occurs infrequently unless there are disruptions in the
gastric epithelial barrier.

— Adherence:
'\‘ BabA, SabA, AlpA,
AIpB and HopZ

The antibacterial properties of the human stomach de-
scribed above prevent most bacterial species from colonizing
the stomach. Based on the high prevalence of H. pylori in
humans throughout the world, it may be presumed that H.

pylori possesses mechanisms to overcome these innate host

defenses.

H. PYLORI FACTORS THAT CONTRIBUTE TO
GASTRIC COLONIZATION

The capacity of H. pylori to colonize the human stomach can
be attributed to the production of specific bacterial products
(Fig. 2). Numerous H. pylori components have been designated
colonization factors based on the demonstration that null mu-
tant strains defective in the production of these factors are
impaired in the ability to colonize the stomach in animal mod-
els. For example, H. pylori null mutant strains defective in
production of urease or flagella are unable to colonize animal
models (59, 62). Urease hydrolyzes urea to yield ammonium
ions and thereby contributes to the acid resistance of H. pylori

CNyH,O (urea)
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FIG. 2. Colonization factors of H. pylori. Multiple bacterial factors contribute to the ability of H. pylori to colonize the stomach. Urease
contributes to the acid resistance of H. pylori. Flagella permit bacterial motility, which allows bacterial penetration of the mucus layer. Several outer
membrane proteins, including BabA, SabA, AlpA, AlpB, and HopZ, can mediate bacterial adherence to gastric epithelial cells.
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(144). Flagella confer the property of motility and enable H.
pylori to penetrate the gastric mucus layer. In a recent signa-
ture-tagged mutagenesis analysis, 47 H. pylori genes were
found to be essential for colonization of the Mongolian gerbil
stomach but not essential for growth of H. pylori in vitro (111).
Probably many other H. pylori factors are also required for
colonization of the stomach.

Multiple H. pylori outer membrane proteins, including BabA,
SabA, AlpA, AlpB, and HopZ, can mediate H. pylori adher-
ence to gastric epithelial cells (Fig. 2). Attachment of H. pylori
to gastric epithelial cells results in activation of numerous
signaling pathways (87) and permits efficient delivery of toxins
or other effector molecules into the cells. Studies in an animal
model indicate that attachment of H. pylori to epithelial cells
influences the development of gastric mucosal inflammation,
production of autoantibodies, and parietal cell loss (90).

H. pylori outer membrane proteins and other surface com-
ponents are likely targets for recognition by host immune de-
fenses. One mechanism by which H. pylori evades immune
recognition may involve a form of antigenic disguise in which
the bacteria are coated with host proteins. For example, H.
pylori PgbA and PgbB proteins bind plasminogen, and the
bacteria can thereby be coated with this host protein (108).
Other mechanisms for evading immune recognition may in-
volve phase variation and antigenic variation of surface com-
ponents. Phase variation has been reported for multiple H.
pylori surface components, including outer membrane proteins
and lipopolysaccharide (LPS) antigens (14, 198, 210, 241). Ge-
netic rearrangements contribute to antigenic variation in CagY
(16), and intragenomic recombination may contribute to anti-
genic variation in outer membrane proteins (210).

LPS from most bacterial organisms serves as a potent signal
for development of an inflammatory response. An important
H. pylori adaptation is the synthesis of LPS that is less proin-
flammatory than LPSs from many other gram-negative species
(114, 157, 181). In comparison to LPS from Escherichia coli or
Salmonella enterica serovar Typhimurium, H. pylori LPS has
approximately 500-fold-lower endotoxic activity (162), and its
ability to stimulate macrophage production of proinflamma-
tory cytokines, nitric oxide, and prostaglandins is relatively
weak (35, 181). The low biological activity of H. pylori LPS is
attributable to modifications of its lipid A component (157,
162). H. pylori strains commonly express LPS O antigens that
are structurally related to Lewis blood group antigens found on
human cells (19, 154). This similarity in structure between H.
pylori LPS and Lewis blood group antigens may represent a
form of molecular mimicry or immune tolerance that permits
H. pylori LPS antigens to be shielded from immune recognition
because of similarity to “self” antigens.

Many H. pylori strains contain a 40-kb region of chromo-
somal DNA known as the cag pathogenicity island (PAI) (5,
40). Some strains contain an incomplete cag PAI (less than 40
kb in size), and in other strains the cag PAI is completely
absent (40, 166). One product of the cag pathogenicity island,
CagA, is translocated into gastric epithelial cells and induces
numerous alterations in cellular signaling (18, 98, 171, 204,
214). Multiple other products of the cag pathogenicity island
have a role in secretion of CagA and in altering gene tran-
scription in gastric epithelial cells (5, 40, 71, 87, 205). In com-
parison to cag PAl-negative H. pylori strains, cag PAI-positive
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strains stimulate gastric epithelial cells to produce high levels
of proinflammatory cytokines such as interleukin-8 (IL-8) (5,
38, 71, 87, 125, 161, 205). Gastric cancer and peptic ulcer
disease occur more commonly in persons infected with cag
PAl-positive strains (particularly those strains containing an
intact 40-kb cag PAI) than in persons infected with cag PAI-
negative strains (33, 70, 166, 236).

Several H. pylori factors are known to interact directly with
immune cells and modulate immune responses to H. pylori.
These factors include a secreted toxin (VacA) (37, 46, 77, 219),
neutrophil-activating protein (HP-NAP or NapA) (68, 197),
arginase (83, 256), urease (93, 139, 140), Hsp60 (a GroEL heat
shock protein) (81), SabA (235), HepA (53), CagA (170, 234),
and a proinflammatory peptide designated Hp(2-20) (29). Sev-
eral of these factors act on multiple different types of immune
cells. For example, VacA alters the function of T lymphocytes,
B cells, macrophages, and mast cells (37, 49, 77, 152, 219, 220,
258), and HP-NAP acts on neutrophils, mast cells, and mono-
cytes (155, 156, 197). The activities of H. pylori factors that
interact directly with immune cells will be discussed in greater
detail below.

IMMUNE RESPONSE TO H. PYLORI IN HUMANS

Acute Infection

There have been several reports of acute H. pylori infection
in humans, and these provide insight into the immune re-
sponses to H. pylori that occur within the first few days after
infection. Soon after the discovery of H. pylori, two volunteers
ingested cultures of the organism (143, 159, 160). Both volun-
teers developed nausea, vomiting, or fever within 10 days after
ingesting H. pylori, and gastric biopsies revealed mucosal in-
flammation in both volunteers. By 2 weeks postinfection, a
sharp rise in the gastric pH to about 7 was detected in one of
the volunteers. In 1979, a group of 17 volunteers were probably
inadvertently infected with H. pylori (85, 191), and these per-
sons also developed hypochlorhydria in association with gastric
mucosal inflammation. Further insight comes from a case in
which an endoscopist reported a syndrome of cramping epi-
gastric pain, accompanied by transient fasting achlorhydria and
acute neutrophilic gastritis, about 5 days after infection with H.
pylori (208). Within 14 days after infection, this individual
developed an H. pylori-specific immunoglobulin M (IgM) and
IgA immune response.

More recently, 20 human volunteers were experimentally
infected with 10* to 10'® CFU of an H. pylori strain (86).
Symptoms occurred most frequently during the second week
after infection and included dyspepsia (in >50% of subjects),
headaches, anorexia, abdominal pain, belching, and halitosis.
Gastric biopsies performed 2 weeks after infection showed
infiltration of lymphocytes and monocytes, along with signifi-
cantly increased expression of IL-1B, IL-8, and IL-6 in the
gastric antrum (86). Four weeks after infection, the numbers of
gastric CD4* and CD8™" T cells were increased compared to
preinfection levels, indicating the development of an early
adaptive immune response (168). These cases provide evi-
dence that gastric inflammation develops within a short period
of time after H. pylori infection and that the initial colonization
of the stomach by H. pylori frequently results in upper gastro-
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intestinal symptoms. Either innate immune responses to H.
pylori or early adaptive immune responses could account for
the gastric mucosal inflammatory responses and symptoms that
accompany acute infection.

Chronic Infection

Gastric mucosal biopsies from humans who are persistently
infected with H. pylori reveal an increased concentration of
various types of leukocytes compared to biopsies from unin-
fected humans (45, 55). This inflammatory response to H.
pylori has been termed “chronic superficial gastritis” (55, 243).
Lymphocytes (both T cells and B cells), macrophages, neutro-
phils, mast cells, and dendritic cells (DCs) are usually present
(27, 55, 222). CD4™ T cells are typically more abundant than
CD8* T cells (22, 132, 146, 184). CD4*/CD25™ regulatory T
cells expressing FOXP3 are present in higher numbers in the
gastric mucosa of H. pylori-infected persons than in uninfected
persons, and these are presumed to play an important role in
regulating the inflammatory response (130, 131). Various cell
types, including B cells and CD4™ cells, sometimes organize
into lymphoid follicles (228). The chronic gastric mucosal in-
flammatory response to H. pylori probably reflects the com-
bined effects of a cellular immune response and an ongoing
stimulation of an innate immune response.

In contrast to the intestine, the stomach does not contain
Peyer’s patches or M cells (165). Therefore, there is some
uncertainty about the location where priming of the immune
response to H. pylori occurs. Gastric epithelial cells up-regulate
expression of major histocompatibility complex (MHC) class II
and costimulatory molecules during H. pylori infection (17,
255), and potentially these cells have a role in antigen presen-
tation. Monocytes, macrophages, and dendritic cells in the
lamina propria of the gastric mucosa also may play important
roles in antigen presentation (115, 222, 240). Alternatively,
priming of the immune response to H. pylori may occur within
lymph nodes draining the stomach or may occur at intestinal
sites in response to H. pylori antigens or intact organisms that
are shed from the stomach.

H. pylori-specific CD4™ T cells are detectable in the gastric
mucosae of H. pylori-infected persons but not uninfected per-
sons (52, 54, 132). One study reported that about 15% of
CD4™" T-cell clones isolated from the stomachs of H. pylori-
infected persons were H. pylori specific, whereas the other
T-cell clones did not proliferate in response to antigens in H.
pylori lysate (52). Some T-cell clones from H. pylori-infected
patients recognize epitopes on parietal cell H",K*-ATPase
(9), and it has been suggested that recognition of H* K-
ATPase by gastric T cells may contribute to the development
of autoimmune gastritis (51).

Levels of numerous cytokines, including gamma interferon
(IFN-v), tumor necrosis factor (TNF), IL-1B, IL-6, IL-7, IL-§,
IL-10, and IL-18, are increased in the stomachs of H. pylori-
infected humans compared to uninfected humans (47, 126).
IL-4 has not been detected in the gastric mucosae of most H.
pylori-infected persons (110, 126, 184). The Th1-defining cyto-
kine, IFN-y, is expressed by a higher proportion of gastric T
cells from H. pylori-infected persons than gastric T cells from
uninfected persons (22, 91, 110, 126, 211). In one study, 83% of
H. pylori-specific gastric T-cell clones produced IFN-y but not
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IL-4 upon stimulation with H. pylori antigens, compared to
17% of clones that produced IL-4 (22, 52). Based on the
relative abundance of IFN-y-producing T cells and the relative
scarcity of IL-4-producing gastric T cells in the setting of H.
pylori infection, it has been concluded that H. pylori infection
leads to a Thl-polarized response (22, 211). In the setting of H.
pylori infection, multiple cytokines in the gastric mucosa (in-
cluding TNF, IFN-y, IL-1B, IL-6, IL-8, and IL-18) are pre-
dicted to have proinflammatory effects, whereas IL-10 is an
immunoregulatory cytokine that may limit the inflammatory
response.

A humoral immune response to H. pylori is elicited in nearly
all H. pylori-infected humans (180). In a study of H. pylori-
infected human volunteers, H. pylori-specific serum IgM anti-
bodies were present by 4 weeks postinfection (168). Serum IgA
and IgG antibodies in persons with chronic H. pylori infection
are directed toward many different H. pylori antigens (147,
180). Antibody-secreting cells producing H. pylori-specific IgA
or IgM antibodies are detectable in the gastric mucosae of H.
pylori-infected persons (147), and secretory IgA antibodies to
H. pylori are detectable in gastric juice, which suggests that H.
pylori infection elicits a local secretory IgA response in the
stomach (96, 147).

Factors Modulating the Immune Response to
H. pylori in Humans

The gastric mucosal inflammatory response to H. pylori in
humans may be modulated by characteristics of the H. pylori
strain. Infection with H. pylori strains containing the cag PAI is
typically associated with a more severe inflammatory response
than that which accompanies infection with cag PAl-negative
strains (33, 230). Similarly, H. pylori strains containing type
sl/m1 vacA alleles, containing a gene of unknown function
known as jhp0917/0918 (dupA), and expressing certain outer
membrane proteins (BabA and HopH [OipA]) are associated
with an enhanced inflammatory response (128, 137, 186, 252).

The gastric inflammatory response to H. pylori also may be
modulated by characteristics of the human host. H. pylori-
associated gastric inflammation in adults is characterized by
infiltration of mononuclear cells and neutrophils, whereas in
children the inflammatory response often is predominantly
lymphocytic with relatively few neutrophils (246). Adults who
are persistently colonized with H. pylori for many decades may
develop atrophic gastritis (an inflammatory process character-
ized by loss of glandular structures and parietal cells in the
gastric mucosa), which is considered a preneoplastic lesion (45,
117).

No immunodeficiency diseases are known to result in en-
hanced severity of H. pylori-associated inflammation. For ex-
ample, gastric inflammation is not more severe in H. pylori-
infected humans with IgA deficiency than in immunocompetent
hosts (36). However, single-nucleotide polymorphisms in sev-
eral genes encoding proinflammatory cytokines can influence
the clinical outcome of H. pylori infection (Table 1). Polymor-
phisms that result in elevated levels of IL-1B and TNF-a and
reduced levels of IL-10 have been associated with an increased
risk of atrophic gastritis and gastric cancer (64, 66, 101, 134,
232, 248). A polymorphism in the promoter region of IL-1
receptor antagonist that leads to reduced expression of IL-1
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TABLE 1. Genetic polymorphisms in cytokine-encoding genes which influence the clinical course of H. pylori infection in humans

Gene product Polymorphism(s)

Postulated effect of polymorphism Reference(s)

IL-1B IL-1B-31C, IL-1B-511T Increased expression of IL-1B, which induces 63-66, 134, 135
expression of proinflammatory cytokines
and inhibits acid secretion
IL-1RA IL-1RN*2 Reduced expression of IL-1 receptor agonist, 135
which increases IL-1B activity
IL-2 IL-2-330T Reduced IL-2 expression 232
IL-10 IL-10 haplotype ATA Reduced expression of IL-10, which 66
increases proinflammatory cytokine activity
TNF TNF-A-308A Increased TNF expression, which induces 606, 134

expression of proinflammatory cytokines
and inhibits acid secretion

receptor antagonist has also been associated with an increased
incidence of atrophic gastritis and gastric cancer (64, 135, 187).
The exact mechanisms by which these polymorphisms affect
the risk for gastric cancer are not yet completely understood.
Some of the TNF-a and IL-10 polymorphisms associated with
increased risk for gastric cancer are considered proinflamma-
tory genotypes (66, 134), and IL-1pB is known to be a potent
inhibitor of gastric acid secretion (254). These polymorphisms
may predispose individuals to develop gastric atrophy and gas-
tric cancer by pathways involving enhancement in the severity
of gastric inflammation and a reduction in gastric acid secre-
tion (254).

Although H. pylori is very successful in evading immune
clearance, it is possible that the immune response is sometimes
successful in clearing H. pylori from the stomach. The fre-
quency with which H. pylori is cleared by the immune response
is not known. In regions of the world with a high incidence of
H. pylori infection, reinfection occurs commonly following H.
pylori eradication (213), which suggests that a protective im-
mune response develops infrequently in H. pylori-infected per-
sons.

INTERACTIONS BETWEEN H. PYLORI AND HOST
DEFENSES IN ANIMAL MODELS

H. pylori Infection of Wild-Type Animals

Several animal models of H. pylori infection have been de-
veloped, utilizing mice, Mongolian gerbils, guinea pigs, rats,
ferrets, beagle dogs, cats, gnotobiotic piglets, or nonhuman
primates (reviewed in references 174 and 245). The use of
nonhuman primate models is of particular interest because of
the close relatedness of these animals to humans. The rhesus
monkey can be experimentally infected with H. pylori, and a
large proportion of monkeys in certain colonies are naturally
infected with H. pylori (57, 58, 148, 209). Histopathological
changes that occur in the gastric mucosae of monkeys in re-
sponse to H. pylori infection are similar to the changes that
occur in H. pylori-infected humans (148). However, H. pylori-
associated peptic ulceration and gastric adenocarcinoma have
not been described in nonhuman primate models (148).

Mongolian gerbils can be experimentally infected with H.
pylori and develop gastric inflammation characterized by infil-
tration of mononuclear cells and neutrophils (149, 172, 247).
An attractive feature of the Mongolian gerbil model is that
these animals may develop gastric mucosal ulceration or gas-

tric adenocarcinoma in response to H. pylori infection (73, 100,
172, 244), and they thus provide a model for two important H.
pylori-associated diseases that occur in humans. Several studies
suggest that products of the H. pylori cag pathogenicity island
contribute to gastric pathology in the gerbil model (105, 172,
192). Limitations of this model include the relative paucity of
gerbil-specific immunologic reagents and the fact that Mongo-
lian gerbils are outbred.

The mouse model is frequently utilized because of low cost,
availability of relevant reagents, and the potential for develop-
ment of knockout mice (142). H. pylori can persistently colo-
nize the stomachs of wild-type mice for periods of at least 15
months. However, wild-type mice do not develop gastric mu-
cosal ulceration or gastric adenocarcinoma in response to H.
pylori. One limitation of the mouse model is that only a few
human isolates of H. pylori have been successfully adapted to
permit efficient colonization of the mouse stomach (20). Infant
mice and certain types of knockout mice (e.g., IL-12 knockout
mice) seem to be more permissive hosts than are wild-type
adult mice and tolerate infection with a broader range of H.
pylori strains (89, 99). A different Helicobacter species, H. felis,
also can colonize conventional inbred mice and causes more
severe gastric inflammation than does H. pylori (196). How-
ever, H. felis does not express several important H. pylori vir-
ulence factors (249).

The gastric mucosal inflammation that develops in wild-type
mice infected with H. pylori consists primarily of lymphocytes
and other mononuclear cells. Most of the infiltrating cells are
CD4™" T cells, but CD8" T cells, B cells, dendritic cells, and
monocytes are also present (167, 199, 207, 237). The intensity
of inflammation that develops in H. pylori-infected mice is
relatively mild compared to that which develops in H. pylori-
infected humans and is also relatively mild compared to that
which develops in H. pylori-infected Mongolian gerbils (121).
Neutrophils are typically present in the gastric mucosae of H.
pylori-infected humans (194, 246) and gerbils (100) but are less
commonly observed in the gastric mucosae of H. pylori-in-
fected mice (138).

C57BL/6 mice have been commonly used for studies of H.
pylori. Gastric levels of IFN-y, IL-12, TNF, and IL-6 are in-
creased in H. pylori-infected C57BL/6 mice compared to unin-
fected mice, whereas gastric levels of IL-4 are not increased in
response to H. pylori infection (150, 212). Upon antigen stim-
ulation ex vivo, splenocytes from H. pylori-infected C57BL/6
mice produce substantially more IFN-y than IL-4 (107, 127,
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TABLE 2. H. pylori infection of mouse knockout models”

CLIN. MICROBIOL. REV.

Bacterial density

Inflammation compared

Knockout model (mouse strain[s]) H. pylori strain compared to WT to control Reference(s)
NOS2 /= (C57BL/6) SS1 Similar colonization More severe gastritis 32
Gp91P*/NOS2~/~ (C57BL/6) SS1 Reduced colonization More severe gastritis 32
SCID (B- and T-cell deficient) (C57BL/6) SS1 Greater colonization No gastric inflammation 61
u-MT (B-cell deficient) (C57BL/6) SS1 Reduced colonization More severe gastritis 3
MHC class I KO (C57BL/6) SS1 Greater colonization ND 177
MHC class II KO (C57BL/6) SS1 Greater colonization ND 177
IFN-y KO (C57BL/6) SM326 ND No gastric inflammation 207
IFN-y KO (C57BL/6) CPY2052 Greater colonization No gastric inflammation 199, 251
IFN-y KO (C57BL/6 and BALB/c) SM326 More frequent recovery ND 109

of bacteria

IRF-1 KO (C57BL/6) SS1 Greater colonization No gastritis 212
IL-4 KO (C57BL/6) SM326 ND More severe gastritis 207
IL-4 KO (C57BL/6 and BALB/c) SM326 Similar colonization ND 109
IL-4 KO (C57BL/6) SS1 Similar colonization Similar degree of gastritis 42
IL-4 Tg (IL-4 overexpression) (C3H) SS1 Similar colonization Similar degree of gastritis 42
IL-10 KO (IL-10"/7, 129 x C57BL/6) SS1 Reduced colonization More severe gastritis 43
IL-12 KO (C57BL/6) SS1 Similar colonization Similar degree of gastritis 2
FasL KO (C57BL/6) SS1 Similar colonization Similar degree of gastritis 107
TNF KO (C57BL/6) CPY2052 and KP142 Greater colonization Similar degree of gastritis 251
TNF receptor KO (C57BL/6) Six clinical isolates of ND Similar degree of gastritis 229

H. pylori

“ This table summarizes the results of selected studies in which transgenic mouse models were infected with Helicobacter pylori. WT, wild type; ND, not determined;

KO, knockout.

207). These patterns of cytokine expression are indicative of a
predominantly Th1 response, which is similar to the response
which occurs in H. pylori-infected humans.

There is variability among different strains of inbred mice in
susceptibility to H. pylori infection (138, 231) and in host re-
sponses to H. pylori. Inbred mice are known to have default
T-helper responses, and therefore, the genetic backgrounds of
inbred mice may influence the T-cell response to H. pylori.
C57BL/6 mice have a default Thl response, whereas BALB/c
mice have a default Th2 response (113). This difference may be
a factor that helps to explain why BALB/c mice are relatively
resistant to H. pylori colonization and why H. pylori-infected
BALB/c mice develop relatively mild gastric inflammation
compared to H. pylori-infected C57BL/6 mice (109, 196).

H. pylori Infection of Knockout Mice

Mouse knockout models have served as valuable tools for
investigating the roles of various components of the immune
response to H. pylori. Features of H. pylori infection in selected
mouse knockout models are discussed below, and a summary
of the data is shown in Table 2. As noted above, inbred mice
are known to have default T-helper responses, and conse-
quently, the genetic backgrounds of mouse strains can poten-
tially influence the results of knockout mouse studies. Most
studies of H. pylori infection in knockout mice have been per-
formed with C57BL/6 animals, which have a default Thl re-
sponse.

SCID (severe combined immunodeficient) mice lack mature
T and B lymphocytes due to a defective capacity to express
rearranged antigen receptors and are therefore deficient in
both humoral and cell-mediated immunity. SCID mice can be
successfully colonized by H. pylori, but these mice develop
minimal gastric inflammation in response to infection (61).
This indicates that an adaptive immune response is required

for development of chronic gastric inflammation in response to
H. pylori and also indicates that gastric inflammation is not
required in order for H. pylori to persistently colonize the
stomach. If H. pylori-infected SCID mice receive splenocytes
from uninfected C57BL/6 mice through adoptive transfer, the
recipient SCID mice develop severe gastric inflammation char-
acterized by a neutrophilic infiltrate (61). The gastritis that
develops in H. pylori-infected SCID recipient mice is more
severe than that which occurs in H. pylori-infected C57BL/6
mice (61). The transfer of splenocytes to SCID mice poten-
tially induces a severe form of gastritis due to the absence of
regulatory cells in the SCID mice (61, 182).

w-MT (B-cell-deficient) mice infected with H. pylori develop
gastritis that is more severe than that which occurs in wild-type
mice, and subsequently H. pylori infection is cleared from
the stomachs of the B-cell-deficient mice (3). There are
several possible reasons why H. pylori-induced gastritis may
be more severe in B-cell-deficient mice than in wild-type
mice. For example, antibodies produced by wild-type mice
may engage the inhibitory IgG receptor (FcyRIIb) on leuko-
cytes and increase expression of anti-inflammatory cytokines
such as IL-10 (3).

In comparison to H. pylori-infected wild-type mice, H. pylori-
infected mice with defects in IFN-y expression (IFN-y /" mice
or interferon response factor 17/~ mice) develop less severe
gastric inflammation and have higher bacterial colonization
densities (2, 169, 199, 207, 212, 251). This suggests that IFN-y
contributes to increased severity of H. pylori-induced gastric
inflammation while also contributing to reducing bacterial col-
onization. In support of this view, H. pylori-infected SCID mice
reconstituted with splenocytes that express IFN-y developed
more severe gastritis than did mice reconstituted with IFN-y-
deficient splenocytes (60). IFN-y may indirectly modulate the
severity of gastritis by activating macrophages to secrete proin-
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flammatory cytokines and also may down-regulate the expres-
sion of anti-inflammatory factors such as the anti-inflammatory
cytokine transforming growth factor B (215).

In comparison to Helicobacter-infected mice that express
IL-10, infected IL-107/~ mice develop more severe gastritis
(26, 43). IL-10 is known to be a potent anti-inflammatory and
immunoregulatory cytokine, and therefore it seems likely that
IL-10 has a role in down-regulating H. pylori-induced inflamma-
tion (43). One study reported that H. pylori-infected IL-4~'~ mice
developed more severe gastritis than did H. pylori-infected
wild-type C57BL/6 mice (207). Similarly, H. felis-infected IL-
47/~ mice developed significantly more severe gastric inflam-
mation than did H. felis-infected IL-4*/* mice (151). Although
the results of studies analyzing IL-4~/~ mice have not been
entirely uniform (42, 109), these data suggest that both IL-10
and IL-4 have a role in down-regulating gastric inflammation
(26, 72, 151, 207, 257).

A general theme that emerges from studies of H. pylori in
mouse models is that there is a reciprocal relationship between
the intensity of gastric mucosal inflammation and bacterial load
(or colonization density) (32, 43, 61, 188, 199, 251). For example,
IFN-y~/~ mice have relatively high bacterial loads and mild gas-
tritis, whereas IL-10~'~ mice have relatively low bacterial loads
and severe gastritis (43). As will be discussed later in this review,
these observations are relevant to understanding the immuno-
logic basis for protective immunity to H. pylori.

Th1 and Th2 Responses in Mice

The data described above, involving experiments with vari-
ous knockout mice, suggest that expression of IFN-y (a Thl
cytokine) contributes to enhanced gastric inflammation,
whereas expression of certain Th2 cytokines (IL-10 and possi-
bly IL-4) contributes to diminished inflammation. To investi-
gate further the role of Thl and Th2 responses in modulating
gastric inflammation, C57BL/6 mice were initially infected with
a nematode that induces a strong Th2 response and then were
challenged with H. felis (72). In comparison to mice infected
with H. felis alone, the mice coinfected with H. felis and the
nematode had reduced gastric expression of Thl cytokines
(IFN-vy, TNF, and IL-1pB), increased gastric expression of Th2
cytokines (IL-4, IL-10, and transforming growth factor 8), and
reduced gastric inflammatory scores (72). These data provide
support for the hypothesis that a Th2-polarized response
down-regulates the severity of H. pylori-induced gastric inflam-
mation.

Several cytokines affect the expression of gastric hormones
that control gastric acid secretion. Expression of gastrin, a
hormone that stimulates gastric acid secretion, is stimulated by
IFN-y (257), and expression of somatostatin, a hormone that
inhibits gastric acid secretion, is stimulated by IL-4 and inhib-
ited by IFN-y and TNF (25, 257). Increased expression of
IFN-y (a Thl response) is expected to result in increased
gastrin production, whereas expression of IL-4 (a Th2 re-
sponse) is expected to result in increased somatostatin produc-
tion and reduced gastrin secretion. One study used a mouse
model of H. felis infection to investigate the effects of IL-4-
induced alterations on gastrin and somatostatin expression
(257). As expected, administration of IL-4 resulted in in-
creased somatostatin expression and reduced gastrin expres-
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sion. These changes were accompanied by a reduction in the
severity of H. felis-induced gastritis. The modulatory effects of
IL-4 on the severity of gastric inflammation were observed in
H. felis-infected wild-type mice but not in infected somatostatin
knockout mice, which suggested that the IL-4-induced alter-
ations in inflammation were mediated through effects of IL-4
on somatostatin production by D cells (257).

Role of Regulatory T Cells

The gastric mucosal inflammatory response to H. pylori may
be regulated in part by regulatory T cells (Tregs) (CD25"
CD45RB" T cells). CD4"/CD25" Tregs can suppress cytokine
production and proliferation of other T cells (118). One recent
study investigated the role of Tregs in a murine model of H.
pylori-induced gastritis by reconstituting athymic C57BL/6
nude mice (T-cell-deficient nu/nu mice) with either lymph
node cells containing CD25" cells or lymph node cells de-
pleted of CD25" cells, 3 weeks prior to H. pylori infection
(188). In mice reconstituted with a cell population depleted of
Tregs, a relatively severe gastritis occurred by 6 weeks postin-
fection compared to that which occurred in mice reconstituted
with a nonsorted T-cell population (containing both CD25™"
and CD25™ T cells). The mice reconstituted with a T-cell
population lacking CD25™ cells developed a stronger Th1 re-
sponse, characterized by increased numbers of CD4" T cells in
the mucosa and increased IFN-y production compared to mice
reconstituted with an unsorted T-cell population (188). These
data indicate that Tregs have an important role in regulating
the gastric mucosal inflammatory response to H. pylori.

Protective Immunity in Animal Models

Protective immunity to H. pylori may be defined as either (i)
immunity that protects against H. pylori colonization of the
stomach or (ii) an immune response that results in eradication
of an established infection. Both prophylactic H. pylori immu-
nization (to prevent future infection) and therapeutic immu-
nization (to eradicate an established infection) have been
successfully accomplished in animal models (50, 106, 142, 195).

Several early studies suggested that protection might be me-
diated by Helicobacter-specific antibodies (30, 48, 69, 122).
Subsequently, it was shown that immunization of p-MT mice
(which are unable to produce antibodies) or IgA-deficient mice
can result in protective immunity against H. pylori or H. felis
infection (3, 31, 67, 76, 84, 221). Therefore, there is now a
general consensus that H. pylori-specific antibodies are not
required for protective immunity.

Cellular immune responses seem to have an important role
in protective immunity against H. pylori. Mice deficient in
CD8™ T cells (MHC class I/~ mice) can be successfully im-
munized and protected against colonization with H. pylori
(177), whereas mice deficient in CD4" T cells (MHC class
11/~ mice) were not protected by prophylactic immunization
against H. pylori (177). CD4" T cells from H. felis-immunized
mice can mediate protective immunity if adoptively transferred
into immunodeficient Ragl '~ mice (84). These data suggest
that CD4" T cells, but not CD8" cells, are necessary for
protection (67, 177).

Several lines of evidence suggest that Th2-type responses
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might be required for protective immunity against H. pylori.
Specifically, persistent H. pylori infections in humans and mice
typically result in Th1-polarized responses, whereas successful
Helicobacter immunization of animals typically results in Th2-
polarized responses (1, 50). In addition, adoptive transfer of
Th2 cells from H. felis-infected C57BL/6 mice into infected
C57BL/6 mice significantly reduced the bacterial load com-
pared to when Thl cells were adoptively transferred (151).
Conversely, there is evidence that a Th2 response may not be
required for protection. Specifically, IL-4 and IL-5 knockout
C57BL/6 mice were successfully protected from H. pylori in-
fection following immunization (76). In addition, studies with
IL-4 receptor a-chain-deficient BALB/c mice (which lack both
IL-4 and IL-13 signaling) suggested that IL-4 and IL-13 are not
required for a protective immune response (129). Whether
IFN-vy-producing Th1 cells are required for protective immu-
nity is not yet completely clear (75, 199). However, immuniza-
tion studies using IL-12 and IL-18 knockout mice indicate that
these two Thl cytokines are required for effective protection
against H. pylori and suggest that the establishment of an active
Thl-type response is required for protection (2, 4, 75). In
summary, the role of Thl-type versus Th2-type immune re-
sponses in protective immunity to H. pylori infection remains
incompletely understood. Differences in the mouse strain
backgrounds used in various studies potentially complicate in-
terpretation of the data.

There is evidence that protective immunity against H. pylori
in prophylactically immunized mice may require mast cells. In
contrast to immunized wild-type mice, immunized mast cell-
deficient mice (W/W v mice) were not protected from chal-
lenge with H. felis (238). Reconstitution of W/W v mice with
bone marrow-derived mast cells restored the ability of W/W v
mice to develop a protective immune response following pro-
phylactic vaccination (238). The mechanism by which the mast
cells contribute to protective immunity is undefined, but it may
be hypothesized that mast cells modulate the activity of T cells
or neutrophils through secretion of cytokines or that mast cells
have antibacterial activity via the production of nitric oxide or
antimicrobial peptides.

Further insight into protective immunity against H. pylori
can be gleaned by analyzing levels of H. pylori colonization
(bacterial load or bacterial density) in persistently infected
knockout mouse models. The levels of H. pylori colonization in
SCID mice are significantly higher than those in wild-type mice
(61). Conversely, the levels of H. pylori colonization in IL-10
knockout mice are about 100-fold lower than those in wild-type
mice (43), and in some cases, H. pylori is completely eradicated
from IL-10 knockout mice (104). Control of H. pylori prolifer-
ation in IL-10 knockout mice is associated with development of
a gastric mucosal inflammatory response that is more severe
than that in infected wild-type mice. Therefore, it may be
hypothesized that protective immune responses leading to
eradication of H. pylori are associated with relatively severe
gastric mucosal inflammatory responses.

INTERACTIONS BETWEEN H. PYLORI AND IMMUNE
CELLS IN VITRO

As described in the previous sections of this review, H. pylori
stimulates a gastric mucosal inflammatory response and resists

CLIN. MICROBIOL. REV.

clearance by host immune defenses. To investigate the molec-
ular mechanisms underlying these phenomena, interactions
between H. pylori and various types of immune cells have been
analyzed in vitro. Because H. pylori lives in the gastric mucus
layer and does not typically breach the gastric epithelial bar-
rier, contact between H. pylori and phagocytic cells may be
fairly limited in vivo. Nevertheless, several publications have
described ingestion of H. pylori by phagocytic cells in human
gastric tissue (10, 97, 119, 173). Interactions between H. pylori
and phagocytic cells probably occur when there are disruptions
in the gastric epithelial barrier or in the setting of gastric
mucosal injury. Interactions between H. pylori and intraepithe-
lial T cells potentially occur commonly even in the absence of
gastric epithelial disruptions.

Immune Recognition of H. pylori by Gastric Epithelial Cells

Toll-like receptors recognize conserved microbial compo-
nents, termed “pathogen-associated molecular patterns,” and
play an important role in initiating innate immune responses to
bacterial pathogens. At least 13 different TLRs have been
described, 10 of which are expressed in humans. Among the
TLRs that recognize gram-negative bacteria, some of the most
extensively characterized include TLR2 (which recognizes li-
poproteins), TLR4 (gram-negative LPS), TLRS (flagellin), and
TLRO (bacterial CpG DNA motifs) (223). H. pylori adheres to
human gastric epithelial cells, and therefore TLRs on gastric
epithelial cells would be expected to recognize H. pylori
PAMPs in vivo. Gastric epithelial cells in the antrum and the
corpus of the human stomach are reported to express TLR4,
TLRS, and TLRY (201). In H. pylori-negative patients, TLR4,
TLRS, and TLRY are expressed at both the apical and baso-
lateral poles of gastric epithelial cells. In contrast, in H. pylori-
positive patients, TLR5 and TLRY are expressed exclusively at
the basolateral pole, and TLR4 is expressed at both poles
(201). Localization of TLRs to the basolateral poles of epithe-
lial cells would make it unlikely for adherent H. pylori to be
recognized by these receptors. Cultured primary human gastric
cells express TLR2 and TLRS but not TLR4 (21).

Several studies have sought to characterize the interactions
of H. pylori PAMPs with TLRs in vitro. These studies have
used many different cell types, including primary gastric epi-
thelial cells, gastric epithelial cell lines, and cell lines trans-
fected with plasmids that express TLRs and/or TLR accessory
proteins. It is possible that some of the gastric epithelial cell
lines used in these experiments do not express certain TLR
accessory proteins such as CD14 and MD-2, which are re-
quired for TLR4 signaling. Different sources of H. pylori
PAMPs have been used, including intact bacteria, purified
LPS, and flagellin. Because of the many variations in experi-
mental design, the results of these studies have not been uni-
form. Nevertheless, several general conclusions can be drawn
from these studies.

Analyses of the interactions of purified H. pylori LPS with
TLRs suggest that, in contrast to LPSs from most other gram-
negative bacteria, H. pylori LPS is not well recognized by TLR4
(21, 103, 206). One study provided evidence that H. pylori LPS
may act as an antagonist for TLR4 (124). H. pylori LPS induced
NF-«kB activation in HEK293 cells that expressed TLR2 but
not in HEK293 cells that expressed TLR4 (206). These data
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FIG. 3. Innate immune recognition of H. pylori. Innate immune recognition of H. pylori leads to production of proinflammatory cytokines by
macrophages (M), DCs, mast cells, and gastric epithelial cells. Innate immune recognition of H. pylori is mediated at least in part through TLRs.
In addition, H. pylori peptidoglycan (PG) can be recognized by intracellular Nod receptors (239). Interactions between H. pylori and gastric
epithelial cells lead to activation of NF-«kB and alteration in gene transcription in the epithelial cells. Production of IL-8 by epithelial cells leads
to recruitment of neutrophils (polymorphonuclear leukocytes [PMNs]), which can phagocytose opsonized bacteria and produce reactive oxygen
species (ROI) or reactive nitrogen species (RNI). The activation of mast cells results in degranulation and production of proinflammatory

cytokines and chemokines.

suggest that H. pylori LPS may be recognized by TLR2 instead
of by TLR4. H. pylori Hsp60 also is reported to be recognized
by TLR2 (224).

Unlike flagellins from gram-negative organisms such as Sal-
monella enterica serovar Typhimurium, H. pylori flagellin is not
recognized by TLRS (12, 79, 123). This evasion of TLRS rec-
ognition is attributable to alterations in H. pylori FlaA amino
acid sequences in the TLRS recognition site. If the correspond-
ing amino acids are mutated in FlaA from Salmonella, the
resulting Salmonella mutant strain is not recognized by TLR5
(12). Thus, H. pylori expresses at least two PAMPs (LPS and
flagellin) that are recognized relatively poorly by TLRs and
that may not trigger a strong innate immune response.

Recognition of intact H. pylori organisms by cultured epi-
thelial cells appears to be dependent on TLR2 and TLRS and
to be independent of TLR4 (136, 141, 206). In one study,
dominant negative forms of TLR2, TLR4, and TLRS were
expressed in the human gastric cancer cell line MKN45, and
the cells then were incubated with H. pylori (206). The expres-
sion of chemokines (MIP3«, IL-8, and GROw) in these cells in
response to H. pylori was dependent on TLR2 and TLRS sig-
naling but not on TLR4 signaling. These studies suggest that
intact H. pylori organisms can be recognized by TLRS5, despite
poor recognition of H. pylori flagellin by TLRS. Potentially H.
pylori components other than flagellin are recognized by TLRS,

or perhaps the results are influenced by variations in the meth-
odology used in different studies.

In addition to recognition of H. pylori PAMPs by TLRs, H.
pylori peptidoglycan can be recognized by Nod1l (CARD4), an
intracellular pathogen recognition molecule (239). There is
evidence that the type IV secretion system encoded by the H.
pylori cag PAI delivers H. pylori peptidoglycan into epithelial
cells. Intracellular recognition of H. pylori peptidoglycan by
Nod]1 leads to activation of NF-«kB and altered gene transcrip-
tion in host cells (239). Compared to gastric epithelial cells
from wild-type mice, gastric epithelial cells from Nodl-defi-
cient mice produced significantly less macrophage inflamma-
tory protein-2 in response to H. pylori (239).

In summary, H. pylori can be recognized in vitro by TLRs as
well as the Nod1 receptor, and such recognition probably con-
tributes to initiation of an innate immune response in vivo (Fig.
3). There is no evidence that H. pylori can evade detection by
TLRs, but certain H. pylori PAMPs, such as LPS and flagellin,
seem to be poorly recognized by TLRs. This may represent a
mechanism by which H. pylori down-regulates the intensity of
the innate immune response.

It should be noted that the interactions of H. pylori with
gastric epithelial cells are dependent on characteristics of the
H. pylori strain. H. pylori strains possessing certain adhesins
bind to gastric epithelial cells more efficiently than do strains
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that lack these adhesins (102). Strains that possess the cag PAI
stimulate epithelial cells to produce relatively high levels of
proinflammatory cytokines compared to strains that lack the
cag PAI (5, 38, 71, 87, 125, 161, 205, 239). In addition, strains
possessing the cag PAI and expressing a functionally active
form of VacA can cause structural alterations in gastric epi-
thelial cells (46, 95). Both CagA and VacA have been impli-
cated in increasing the permeability of gastric epithelial mono-
layers (11, 176). A consequence may be entry of H. pylori
antigens into the lamina propria, which would be expected to
trigger an inflammatory response.

Interactions of H. pylori with Neutrophils

Neutrophils are recruited when H. pylori initially colonizes
the human stomach (85, 191), and the gastric mucosal inflam-
matory response that occurs in the setting of persistent H.
pylori infection is characterized by infiltration of neutrophils
(194, 246). Several specific H. pylori factors are known to in-
teract with neutrophils and modulate their function.

H. pylori produces a 150-kDa oligomeric protein known as
neutrophil-activating protein (HP-NAP), which is chemotactic
for neutrophils and activates neutrophils in vitro (68). HP-
NAP stimulates neutrophils to produce reactive oxygen inter-
mediates, and in response to HP-NAP, neutrophils release
Ca®" and phosphorylate cytosolic cellular signaling molecules
(197). In addition, HP-NAP induces expression of 3,-integrins
on the surface of neutrophils (197).

An H. pylori outer membrane protein, SabA, also has an
important role in human neutrophil activation (235). Wild-type
strains of H. pylori expressing SabA activate neutrophils,
whereas mutant and wild-type strains lacking SabA do not
(235). There is evidence that binding of H. pylori to neutrophils
through SabA-mediated adhesion may stimulate a G-protein-
linked signaling pathway and downstream activation of phos-
phatidylinositol 3-kinase (235).

Whether H. pylori can resist phagocytosis by neutrophils is
not yet completely resolved (7, 170), but one study reported
that uptake of unopsonized H. pylori by neutrophils was inef-
ficient compared to uptake of latex-coated beads and that H.
pylori could inhibit phagocytosis of latex-coated beads or Neis-
seria gonorrhoeae (189). If nonopsonized H. pylori organisms
are phagocytosed by neutrophils, the bacteria are able to resist
intracellular killing (7, 227). One mechanism by which nonop-
sonized H. pylori evades intracellular killing may involve dis-
ruption of NADPH oxidase targeting, such that superoxide
anions generated in the oxidative burst do not accumulate in
the phagosome but instead are released into the extracellular
space (7). A catalase-dependent pathway also may have a role
in allowing nonopsonized H. pylori to evade intracellular killing
(189).

The migration of neutrophils in response to chemokines
IL-8 and Groa is mediated through the chemokine receptors
CXCRI1 and CXCR2 (163). H. pylori can down-regulate the
expression of CXCR1 and CXCR2 in human neutrophils in
vitro, and this is predicted to have an inhibitory effect on
neutrophil migration (202). In summary, multiple H. pylori
factors can activate neutrophils, and there is also evidence that
H. pylori can interfere with the proper functioning of neutro-
phils.
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Interactions of H. pylori with Mast Cells

In vitro experiments indicate that whole H. pylori bacteria
(250) and various H. pylori components can activate mast cells.
One H. pylori factor that can activate mast cells is VacA. VacA
can induce mast cell chemotaxis and can stimulate mast cell
expression of multiple proinflammatory cytokines, including
IL-1, TNF, IL-6, IL-13, and IL-10 (49, 220). VacA induces
degranulation of the mast cell line RBL-2H3 but does not
induce degranulation of murine bone marrow-derived mast
cells (49, 220). HP-NAP also can activate mast cells, resulting
in B-hexosaminidase release and IL-6 production (156). Acti-
vation of mast cells by H. pylori may contribute to the inflam-
matory response associated with H. pylori infection.

Interactions of H. pylori with Macrophages

Contact between macrophages and intact H. pylori bacteria
or H. pylori components results in macrophage activation and
the secretion of numerous cytokines and chemokines (81, 93,
140). Macrophages recognize H. pylori LPS via TLR4 (35, 136)
and can also be activated by H. pylori proteins, including urease
and Hsp60 (81, 93). Macrophage recognition of intact H. pylori
can be mediated by TLR2 or TLR4 (141, 216).

Although not all studies have reached identical conclusions
(170), at least one study reported that H. pylori is able to inhibit
its own uptake by macrophages (190). When nonopsonized H.
pylori organisms are internalized by macrophages, they initially
localize in phagosomes, which then coalesce into “megasomes”
that contain multiple bacteria (8, 193). Ingested H. pylori cells
have at least some ability to resist intracellular killing (8). One
study reported that phagolysosomal fusion is impaired in H.
pylori-infected macrophages through retention of the trypto-
phan aspartate-containing coat protein on phagosomes, a phe-
nomenon that is expected to result in increased intracellular
survival of the bacteria (258).

Phagocytosis of bacteria by macrophages typically results in
localization of the microorganisms within phagosomes that
contain protein kinase C (PKC) isoform « (39). PKC activation
plays a role in the respiratory burst and phagosome-lysosome
fusion (120). Upon phagocytosis of nonopsonized H. pylori by
macrophages, PKC isoforms { and € accumulate on the form-
ing phagosomes, but the conventional PKC isoform « does not
(6). Experiments using specific PKC inhibitors suggest that
PKC { regulates actin rearrangement and H. pylori engulfment
(6) and that phagocytosis of nonopsonized H. pylori by macro-
phages may occur via a novel PKC (-regulated pathway. The
ability of nonopsonized H. pylori to resist macrophage killing
may be attributable to features of this PKC {-mediated phago-
cytic process. Opsonized H. pylori is phagocytosed by a PKC
{-independent process, which is likely to involve conventional
pathways (6).

One mechanism by which H. pylori impairs the antimicrobial
activity of macrophages involves expression of catalase. In
comparison to a wild-type catalase-positive H. pylori strain, an
isogenic, catalase-deficient strain was more susceptible to mac-
rophage-mediated killing (23). Another mechanism by which
H. pylori resists macrophage killing is by blocking the produc-
tion of nitric oxide. This effect is mediated by H. pylori argi-
nase, which competes with nitric oxide synthase for arginine
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(83). In addition to resisting killing by macrophages, in vitro
experiments indicate that H. pylori can induce macrophage
apoptosis (41, 44, 82). H. pylori-induced apoptosis of macro-
phages may result in impaired innate and adaptive immune
responses.

Interactions of H. pylori with Dendritic Cells

In response to H. pylori, monocyte-derived human DCs ex-
press costimulatory molecules and major histocompatibility
complex class II proteins (92, 115), which results in increased
efficiency of antigen presentation. H. pylori also stimulates den-
dritic cell expression of multiple cytokines, including IL-6,
IL-8, IL-10, and IL-12 (88, 115, 240). Similar to several other
bacterial pathogens, H. pylori can bind to DC-specific ICAM-
3-grabbing nonintegrin (DC-SIGN), a DC-specific lectin (15,
27). The expression of cytokines by DCs in response to H.
pylori is modulated by interactions between H. pylori LPS Le
antigens (Le*, LeY, Le?, or Le®) and DC-SIGN (27). Dendritic
cells incubated with Le antigen-negative H. pylori strains ex-
press more IL-6 and less IL-10 than do dendritic cells incu-
bated with Le antigen-positive H. pylori (27). Given that IL-10
is known to down-regulate inflammatory responses, the inter-
actions between H. pylori LPS Le antigens and DC-SIGN may
contribute to suppression of inflammation.

Interactions of H. pylori with B Lymphocytes

H. pylori is reported to have several inhibitory effects on B
lymphocytes (152, 234). In one study, H. pylori VacA interfered
with the prelysosomal processing of tetanus toxin in Epstein-
Barr virus-transformed B cells, and the ability of these cells to
stimulate human CD4™" T cells was impaired in the presence of
VacA (152). VacA inhibited the li-dependent pathway of an-
tigen presentation mediated by newly synthesized MHC class
II molecules but did not affect the pathway dependent on
recycling MHC class II (152). Expression of CagA in B cells is
reported to inhibit interleukin-3-dependent B-cell prolifera-
tion by inhibiting JAK-STAT signaling, which may result in
inefficient antibody production and reduced cytokine expres-
sion (234).

Interactions of H. pylori with T Lymphocytes

In vitro experiments indicate that live H. pylori or H. pylori
products can interfere with multiple functions of T lympho-
cytes (37, 77, 78, 219, 256) (Fig. 4). One report indicated that
H. pylori can have proapoptotic effects on T cells (242), but
most of the observed effects occur in the absence of cell death.
Coincubation of H. pylori with T cells results in diminished
expression of IL-2 and IL-2 receptor (CD25), inhibition of
activation-induced proliferation, and cell cycle arrest (37, 77,
78, 219, 256).

The effects of H. pylori on T cells are mediated by several
different bacterial factors, one of which is VacA. VacA
interferes with the activity of nuclear factor of activated T
cells (NFAT), a transcription factor that regulates immune
response genes, in Jurkat T cells, resulting in inhibition of
IL-2 expression and G,/S cell cycle arrest (37, 77). The
effects of VacA on Jurkat cells may be mediated by blocking
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FIG. 4. Effects of H. pylori on T lymphocytes. Multiple H. pylori
factors can suppress T-cell activity. VacA inhibits NFAT activity in T
cells, leading to diminished IL-2 production, and also inhibits T-cell
proliferation (37, 77, 219). Arginase inhibits T-cell receptor (TCR)
signaling (256). An unidentified low-molecular-weight protein has
been reported to inhibit T-cell proliferation by blocking cell cycle
progression (78).

calcium influx, thereby interfering with the activity of the
calcium-dependent phosphatase calcineurin, which is re-
quired for NFAT activation (37, 77). VacA also activates
intracellular signaling in T cells through mitogen-activated
protein kinases MKK3/6 and p38 and the Rac-specific nu-
cleotide exchange factor Vav, thereby causing disorganized
actin polymerization (37). Studies of VacA effects on pri-
mary human CD4" T cells indicate that VacA can also
inhibit T-cell proliferation through a process that is not
dependent on inhibition of NFAT (219).

H. pylori arginase also contributes to inhibition of T-cell
proliferation. One study reported that incubation of T cells
with a wild-type H. pylori strain, but not an arginase mutant
strain, caused decreased expression of the CD3( chain of the
T-cell receptor (256). In addition to VacA and arginase, an
uncharacterized low-molecular-weight protein of H. pylori has
been reported to inhibit proliferation of T lymphocytes (78).
This low-molecular-weight H. pylori factor is reported to block
cell cycle progression at the G, phase.

CONCLUDING REMARKS

H. pylori persistently colonizes the human stomach despite
development of a humoral and cellular immune response. An-
imal models have been very useful in identifying H. pylori
factors that are required for colonization of the stomach and
for elucidating the roles of various host factors in the devel-



608 ALGOOD AND COVER

opment of gastric mucosal inflammation. A protective immune
response to H. pylori can be elicited in animal models by im-
munization, but the immune effector components that mediate
protection remain incompletely defined. H. pylori can alter the
function of many different types of immune cells in vitro. These
in vitro experiments provide important insights into the mo-
lecular mechanisms by which H. pylori resists immune clear-
ance. However, further studies are needed to determine which
in vitro interactions are most relevant in vivo. Future studies,
directed toward understanding interactions between H. pylori
and immune cells in vivo, are expected to lead to important
new insights into the mechanisms of H. pylori persistence and
also may lead to the development of novel therapeutic ap-
proaches for eradication of H. pylori.
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